[This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 5806

Unique Paper Code : 237501

Name of the Paper : Paper STH-501 / Statistical Inference-

I

Name of the Course : B.Sc. (Honours) Statistics

Semester : V

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt SIX questions in all, selecting THREE questions from each Section.

Section - I

State and prove Cramer-Rao inequality. (i) By making a suitable assumption, obtain the alternative form of the inequality, (ii) Also obtain the form of Cramer-Rao inequality in case $X_1, X_2, ..., X_n$ are i.i.d. random variables with common p.d.f. $f_{\theta}(x)$. (12½)

P.T.O.

5806

- 2. (a) If T_1 and T_2 are two unbiased estimators of $\gamma(\theta)$ with variances σ_1^2 , σ_2^2 respectively and correlation coefficient ρ , then what is the best unbiased linear combination of T_1 and T_2 and what is the variance of such a compound. If T_1 is a minimum variance unbiased estimator and T_2 is any other unbiased estimator for $\gamma(\theta)$ with efficiency e_{θ} , then show that $\rho = \sqrt{e_{\theta}}$.
 - (b) In random sampling from $N(\mu, \sigma^2)$ population, where both μ and σ^2 are unknown, obtain the estimator of the form aS² for σ^2 , which has the smallest mean-square error. (9,3½)
- 3. Define a sufficient statistic. Let $X_1, X_2, ..., X_n$ be a random sample from $U(0,\theta)$ population. Obtain MVUE for the parameter θ . Compute the reciprocal of $nE\left\{\frac{\partial \log f(x,\theta)}{\partial \theta}\right\}^2$ and compare this with the variance of MVUE.
- 4. Define an unbiased and a consistent estimator for parameter $\gamma(\theta)$. State and prove sufficient conditions for estimator to be consistent for $\gamma(\theta)$. Show with the help of an example that an estimator may be (i) consistent but not unbiased unbiased but not consistent, in estimating the unknown parameter $\gamma(\theta)$.

Section - II

- (a) Explain the principle of maximum likelihood estimation.
- (b) Show with the help of an example that an ML estimator may not be unique.
- (c) Show that the most general form of a continuous distribution for which the sample harmonic mean is the ML estimator of a parameter θ has p.d.f.

$$f(x,\theta) = \exp\left[\frac{1}{x}\{\theta A'(\theta) - A(\theta)\} - A'(\theta) + C(x)\right]$$

where $A(\theta)$ and C(x) are arbitrary functions of θ and x respectively. (4,4,4½)

(a) Obtain estimates for the parameters θ_1 and θ_2 for the probability mass function:

$$p(x) = \frac{1}{2} \cdot \frac{e^{-\theta_1} \theta_1^x}{x!} + \frac{1}{2} \cdot \frac{e^{-\theta_2} \theta_2^x}{x!}, \quad x = 0, 1, 2, \dots$$

by the method of moments.

(b) Explain the method of minimum χ^2 for estimating unknown parameters. Show that for large n, the minimum χ^2 and ML methods of estimation give identical equations for determining the estimates. Explain modified minimum χ^2 method. (5.7½)

- 7. (a) Obtain $100(1-\alpha)\%$ confidence interval for the population correlation coefficient ρ when a random sample of size n has been drawn from bivariate normal population.
 - (b) Develop a general method for constructing confidence intervals. Consider a random sample of size n from rectangular distribution with p.d.f.

$$f(x,\theta) = \frac{1}{\theta}, \ 0 \le x \le \theta$$
.

Show that R and R/ ξ are the confidence limits for θ with confidence coefficient $(1-\alpha)$, where R is the sample range and ξ satisfies the equation $\xi^{n-1}[n-(n-1)\xi] = \alpha$ (5,7%)

- 8. Write short notes on any Two of the following:
 - (i) General form of the distribution admitting sufficient
 - (ii) Rao-Blackwell theorem
 - (iii) Properties of ML estimators

 $(12^{1/3})$